Conference proceedings article
Tag Recommendations in Folksonomies



Publication Details
Authors:
Jäschke, R.; Marinho, B.; Hotho, A.; Schmidt-Thieme, L.; Stumme, G.
Editor:
Andrzej Skowron, Dunja Mladenic, Stan Matwin, Ramon López de Mántaras, Jacek Koronacki, Joost N. Kok
Publisher:
Springer
Place:
Berlin, Heidelberg
Publication year:
2007
Pages range:
506-514
Book title:
Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases
Title of series:
Lecture Notes in Computer Science
Volume number:
4702

Abstract
Collaborative tagging systems allow users to assign keywords—so called “tags”—to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied.In this paper we evaluate and compare two recommendation algorithms on largescale real life datasets: an adaptation of user-based collaborative filtering and a graph-based recommender built on top of FolkRank. We show that both provide better results than non-personalized baseline methods. Especially the graph-based recommender outperforms existing methods considerably.


Keywords
folksonomy, l3s, recommender, tagging, wp5

Last updated on 2019-25-07 at 12:12