Preprint

Poisson Malliavin calculus in Hilbert space with an application to SPDE



Details zur Publikation
Autor(inn)en:
Andersson, A.; Lindner, F.

Publikationsjahr:
2017
Zeitschrift:
arXiv Preprint
Seitenbereich:
1-48
Abkürzung der Fachzeitschrift:
arXiv
DOI-Link der Erstveröffentlichung:


Zusammenfassung, Abstract

In this paper we introduce a Hilbert space-valued Malliavin calculus for Poisson random measures. It is solely based on elementary principles from the theory of point processes and basic moment estimates, and thus allows for a simple treatment of the Malliavin operators. The main part of the theory is developed for general Poisson random measures, defined on a σ-finite measure space, with minimal conditions. The theory is shown to apply to a space-time setting, suitable for studying stochastic partial differential equations. As an application, we analyze the weak order of convergence of space-time approximations for a class of linear equations with α-stable noise, α(1,2). For a suitable class of test functions, the weak order of convergence is found to be α times the strong order. 



Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2023-19-06 um 11:00