Conference article, meeting abstract
Preservation of plasmonic interactions in DLC protected robust organic-plasmonic hybrid systems
Publication Details
Authors: | Cielecki, P.; Sobolewska, E.; Kostiučenko, O.; Leißner, T.; Tamulevicius, T.; Tamulevicius, S.; Rubahn, H.; Adam, J.; Fiutowski, J. |
Publication year: | 2017 |
Pages range : | TBD |
Book title: | International Conference on Nanotechnology and Innovation in the Baltic Sea Region 2017 - Kaunas, Lithuania : Duration: 14. Jun 2017 - 16. Jun 2017 |
URN / URL: |
Abstract
Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been previously shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating [1]. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays [2], coated with protective layers of varying thickness. We investigate the spectral position of surface plasmon polariton resonances as well as electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we experimentally characterize the plasmonic coupling between organic nanofibers and underlying substrates by time-resolved photoluminescence spectroscopy. Our findings reveal that the optimal thickness for DLC coating, in terms of mechanical protection while preserving plasmonic interactions, is in the range of 25 to 55 nm. This is of a great interest for the fabrication of new plasmonic components with increased durability.
Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been previously shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating [1]. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays [2], coated with protective layers of varying thickness. We investigate the spectral position of surface plasmon polariton resonances as well as electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we experimentally characterize the plasmonic coupling between organic nanofibers and underlying substrates by time-resolved photoluminescence spectroscopy. Our findings reveal that the optimal thickness for DLC coating, in terms of mechanical protection while preserving plasmonic interactions, is in the range of 25 to 55 nm. This is of a great interest for the fabrication of new plasmonic components with increased durability.