Beitrag in einem Tagungsband

Who knows best? A Case Study on Intelligent Crowdworker Selection via Deep Learning



Details zur Publikation
Autor(inn)en:
Herde, M.; Huseljic, D.; Sick, B.; Bretschneider, U.; Oeste-Reiß, S.
Herausgeber:
Bunse, Mirko; Hammer, Barbara; Krempl, Georg; Lemaire, Vincent; Tharwat, Alaa; Saadallah, Amal
Verlag:
CEUR Workshop Proceedings (RWTH Aachen)
Verlagsort / Veröffentlichungsort:
Torino, Italy

Publikationsjahr:
2023
Seitenbereich:
14-18
Buchtitel:
International Workshop & Tutorial on Interactive Adaptive Learning (IAL)
Sprachen:
Englisch


Zusammenfassung, Abstract

Crowdworking is a popular approach for annotating large amounts of data to train deep neural networks. However, parts of the annotations are often erroneous. In a case study, we demonstrate how an intelligent crowdworker selection via deep learning reduces the number of erroneous annotations and, thus, the annotation costs of obtaining reliable data for training deep neural networks.



Schlagwörter
Artificial_Intelligence, Crowdsourcing, Crowdwork, Crowdworker Selection, Deep Learning, itegpub, pub soe, pub ubr

Zuletzt aktualisiert 2023-27-12 um 12:37