Beitrag in einem Tagungsband

Metamodel-based Simulation Optimization Using Machine Learning for Solving Production Planning Problems in the Automotive Industry.



Details zur Publikation
Autor(inn)en:
Schweitzer, F.; Habel, L.; Vilca, O.; Kulzer, T.; Wenzel, S.
Herausgeber:
Bui, Tung X.
Verlag:
University of Hawaii at Manoa
Verlagsort / Veröffentlichungsort:
Honolulu

Publikationsjahr:
2025
Seitenbereich:
1679-1688
Buchtitel:
Proceedings of the 58th Hawaii International Conference on System Sciences
ISBN:
978-0-9981331-8-8


Zusammenfassung, Abstract

Due to the rising complexity of production systems in the automotive industry, simulation has become an established tool for analyzing dynamic systems. However, once the number of parameter combinations rises exponentially, the generation and evaluation of all possible solutions gets impractical. While the combination of simulation and optimization has a long tradition in academic research, its adoption in the automotive industry remains limited, often due to the high execution time associated with optimization experiments. To enable more efficient decision-making, this paper explores the integration of machine learning and optimization for simulation optimization. Specifically, it focuses on the use of metamodels incorporating various machine learning algorithms and metaheuristics to optimize two production planning problems with multiple parameter classes. The presented approach enables decision-makers to conduct a rapid assessment of complex production systems.



Schlagwörter
machine learning, Material flow simulation, metaheuristics, metamodeling, optimization


Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2025-30-01 um 22:30