Aufsatz in einer Fachzeitschrift

Polarization matrices in anisotropic heterogeneous elasticity



Details zur Publikation
Autor(inn)en:
Nazarov, S.; Sokolowski, J.; Specovius-Neugebauer, M.

Publikationsjahr:
2010
Zeitschrift:
Asymptotic Analysis
Seitenbereich:
189-221
Jahrgang/Band :
68
Erste Seite:
189
Letzte Seite:
221
ISSN:
0921-7134


Zusammenfassung, Abstract
Polarization matrices (or tensors) are generalizations of mathematical objects like the harmonic capacity or the virtual mass tensor. They participate in many asymptotic formulae with broad applications to problems of structural mechanics. In the present paper polarization matrices for anisotropic heterogeneous elastic inclusions are investigated, the ambient anisotropic elastic space is allowed to be inhomogeneous near the inclusion as well. By variational arguments the existence of unique solutions to the corresponding transmission problems is proved. Using results about elliptic problems in domains with a compact complement, polarization matrices can be properly defined in terms of certain coefficients in the asymptotic expansion at infinity of the solution to the homogeneous transmission problem. Representation formulae are derived from which properties like positivity or negativity can be read of directly. Further the behavior of the polarization matrix is investigated under small changes of the interface.


Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2022-20-04 um 14:51