Beitrag in einem Tagungsband

Explaining Text Clustering Results using Semantic Structures



Details zur Publikation
Autor(inn)en:
Stumme, G.; Hotho, A.
Herausgeber:
Lavra\v{c} Nada, Gamberger Dragan, Todorovski BlockeelLjupco Hendrik
Verlag:
Springer
Verlagsort / Veröffentlichungsort:
Heidelberg

Publikationsjahr:
2003
Seitenbereich:
217-228
Buchtitel:
Knowledge Discovery in Databases: PKDD 2003, 7th European Conference on Principles and Practice of Knowledge Discovery in Databases
Titel der Buchreihe:
LNAI
Jahrgang/Band :
2838


Zusammenfassung, Abstract
Common text clustering techniques offer rather poor capabilitiesfor explaining to their users why a particular result has beenachieved. They have the disadvantage that they do not relatesemantically nearby terms and that they cannot explain howresulting clusters are related to each other. In this paper, we discuss a way of integrating a large thesaurus and the computation of lattices of resulting clusters into common text clustering in order to overcome these two problems.As its major result, our approach achieves an explanation using anappropriate level of granularity at the concept level as well asan appropriate size and complexity of the explaining lattice ofresulting clusters.


Schlagwörter
analysis, clustering, concept, fca, formal, ontologies, semantic, semantics, text


Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2022-20-04 um 14:27