Aufsatz in einer Fachzeitschrift

Significant decrease in yield under future climate conditions: Stability and production of 138 spring barley accessions



Details zur Publikation
Autor(inn)en:
Backes, G.
Verlag:
ELSEVIER SCIENCE BV

Publikationsjahr:
2015
Zeitschrift:
European Journal of Agronomy
Seitenbereich:
105-113
Jahrgang/Band :
63
Erste Seite:
105
Letzte Seite:
113
Seitenumfang:
9
ISSN:
1161-0301
DOI-Link der Erstveröffentlichung:


Zusammenfassung, Abstract
The response in production parameters to projected future levels of temperature, atmospheric carbon dioxide ([CO2]), and ozone ([O-3]) was investigated in 138 spring barley accessions. The comprehensive set of landraces, cultivars, and breeder-lines, were during their entire life cycle exposed to a two-factor treatment of combined elevated temperature (+5 degrees C day/night) and [CO2] (700 ppm), as well as single-factor treatments of elevated temperature (+5 degrees C day/night), [CO2] (700 ppm), and [O-3] (100-150 ppb). The control treatment was equivalent to present average South Scandinavian climate (temperature: 19/12 degrees C (day/night), [CO2]: 385 ppm). Overall grain yield was found to decrease 29% in the two-factor treatment with concurrent elevation of [CO2] and temperature, and this response could not be predicted from the results of treatments with elevated [CO2] and temperature as single factors, where grain yield increased 16% and decreased 56%, respectively. Elevated [O-3] was found to decrease grain yield by 15%. Substantial variation in response to the applied climate treatments was found between the accessions. The results revealed landraces, cultivars, and breeder-lines with phenotypes applicable for breeding towards stable and high yield under future climate conditions. Further, we suggest identifying resources for breeding under multifactor climate conditions, as single-factor treatmentAid not accurately forecast the response, when factors were combined. (C) 2014 Elsevier B.V. All rights reserved.


Schlagwörter
Carbon dioxide, Carbon dioxide exploitation, Climate change, Combined treatment, Hordeum vulgare, Ozone, Phenotypes, Production parameters, Temperature


Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2022-01-11 um 11:53