Beitrag in einem Tagungsband
Schwarz-Christoffel mappings: Symbolic computation of mapping functions for symmetric polygonal domains
Details zur Publikation
Autor(inn)en: | Koepf, W. |
Herausgeber: | Tutschke, W.; Mshimba, A. S. |
Verlag: | World Scientific Publishing Co., |
Publikationsjahr: | 1995 |
Seitenbereich: | 293-305 |
Buchtitel: | Proceedings of the Workshop on Functional-Analytic Methods in Complex Analysis and Applications to Partial Differential Equations, Trieste, Italy, January 1993 |
Zusammenfassung, Abstract
The Riemann mapping theorem tells that any two simply-connected domains withmore than one boundary point can be mapped conformally upon one another.We shall investigate conformal mappings of the unit disk $\D$ onto a general polygon. Those mappings are called Schwarz-Christoffel mappings, and they are used in many applications as well as in the theory of conformal mapping itself.In this lecture we use Macsyma, a symbolic algebra system, tocalculate the mapping functions for symmetric polygonal domains.
The Riemann mapping theorem tells that any two simply-connected domains withmore than one boundary point can be mapped conformally upon one another.We shall investigate conformal mappings of the unit disk $\D$ onto a general polygon. Those mappings are called Schwarz-Christoffel mappings, and they are used in many applications as well as in the theory of conformal mapping itself.In this lecture we use Macsyma, a symbolic algebra system, tocalculate the mapping functions for symmetric polygonal domains.