Journal article
High Population of Individualized SWCNTs through the Adsorption of Water-Soluble Perylenes
Publication Details
Authors: | Backes, C.; Schmidt, C.; Hauke, F.; Boettcher, C.; Hirsch, A. |
Publisher: | AMER CHEMICAL SOC |
Publication year: | 2009 |
Journal: | Journal of the American Chemical Society |
Pages range : | 2172-2184 |
Volume number: | 131 |
Issue number: | 6 |
Start page: | 2172 |
End page: | 2184 |
Number of pages: | 13 |
ISSN: | 0002-7863 |
DOI-Link der Erstveröffentlichung: |
Abstract
The aqueous dispersion of SWCNTs in the presence of the water-soluble perylene derivatives 1-3 is reported. Significantly, even very low concentrations of the perylenes such as 0.01 wt% of the amphiphilic derivative 3, cause an efficient dissolution of the SWCNTs in water accompanied by a very pronounced individualization. The individualization of SWCNTs in water after ultrasonication in the presence of water-soluble aromatic perylenes was investigated in detail by absorption, emission, and Raman spectroscopy as well as by AFM and cryo-TEM. These studies also revealed that the individualization of the SWCNTs caused by the adsorption of 3 is much more effective than that induced by SDBS, which is the most frequently used surfactant for SWCNT dispersion in water. The pi-pi-stacking interaction and the electronic interaction between the perylene unit and the nanotube surface is reflected, for example, by the distinct absorption and emission features in the UV/vis/nIR, which differ significantly from those observed for SWNTs dispersed in the presence of SDBS and by the quenching of the perylene fluorescence of 3 when being in contact with the tubes.
The aqueous dispersion of SWCNTs in the presence of the water-soluble perylene derivatives 1-3 is reported. Significantly, even very low concentrations of the perylenes such as 0.01 wt% of the amphiphilic derivative 3, cause an efficient dissolution of the SWCNTs in water accompanied by a very pronounced individualization. The individualization of SWCNTs in water after ultrasonication in the presence of water-soluble aromatic perylenes was investigated in detail by absorption, emission, and Raman spectroscopy as well as by AFM and cryo-TEM. These studies also revealed that the individualization of the SWCNTs caused by the adsorption of 3 is much more effective than that induced by SDBS, which is the most frequently used surfactant for SWCNT dispersion in water. The pi-pi-stacking interaction and the electronic interaction between the perylene unit and the nanotube surface is reflected, for example, by the distinct absorption and emission features in the UV/vis/nIR, which differ significantly from those observed for SWNTs dispersed in the presence of SDBS and by the quenching of the perylene fluorescence of 3 when being in contact with the tubes.