Aufsatz in einer Fachzeitschrift

Toward optimal probabilistic active learning using a Bayesian approach



Details zur Publikation
Autor(inn)en:
Kottke, D.; Herde, M.; Sandrock, C.; Huseljic, D.; Krempl, G.; Sick, B.
Verlag:
SPRINGER

Publikationsjahr:
2021
Zeitschrift:
Machine Learning
Seitenbereich:
1199-1231
Jahrgang/Band :
110
Heftnummer:
6
Erste Seite:
1199
Letzte Seite:
1231
Seitenumfang:
33
ISSN:
0885-6125
eISSN:
1573-0565
DOI-Link der Erstveröffentlichung:


Zusammenfassung, Abstract
Gathering labeled data to train well-performing machine learning models is one of the critical challenges in many applications. Active learning aims at reducing the labeling costs by an efficient and effective allocation of costly labeling resources. In this article, we propose a decision-theoretic selection strategy that (1) directly optimizes the gain in misclassification error, and (2) uses a Bayesian approach by introducing a conjugate prior distribution to determine the class posterior to deal with uncertainties. By reformulating existing selection strategies within our proposed model, we can explain which aspects are not covered in current state-of-the-art and why this leads to the superior performance of our approach. Extensive experiments on a large variety of datasets and different kernels validate our claims.


Schlagwörter
Active learning, Classification, Probabilistic active learning

Zuletzt aktualisiert 2024-29-01 um 13:26